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ABSTRACT. Recently a new intriguing class of systems has been introduced, the so-called
generalized exponential models, which exhibit clustering phenomena even if the attractive
term is missing in their interaction potential. This model is characterized by a index n
which tunes the repulsive penetrability of the potential. This family of potentials can rep-
resent the effective interactions for a large number of soft matter systems. In this paper we
study the structural and thermodynamic properties in the fluid regime of the generalized
exponential model with a value of index n suggested by Mladek et al. [B. M. Mladek, G.
Kahl, and C. N. Likos, Phys. Rev. Lett. (2008)] to fit the effective potential of a typical am-
phiphilic dendrimers. We use the conventional approach of the liquid state theory based on
the hypernetted chain closure of the Ornstein-Zernike equation together with some Monte
Carlo numerical simulations. Moreover, we try to detect qualitatively the freezing line
exploiting the predictive properties of a one-phase rule based on the expansion of the sta-
tistical entropy.

1. Introduction

The soft condensed matter concerns the study of that class of systems called complex
liquids encompassing many materials used in our daily life [1]. From academic point of
view, the most intriguing aspect of these systems leads to the possibility to model the ar-
chitecture of the atomic entities which constitute them. The statistical mechanics approach
to the soft matter allows to average out the huge number of freedom internal degrees of
the constituent particles these macromolecules [2]. Hence it is possible to deal with the
problem using the techniques typical of the liquid state theory. The macromolecules are
identified as “effective” spherical particles (even if their shape is far from being spherical),
while their mutual interaction is modelled by an “effective” pair potential. Through suit-
able methods the chemical-physical properties of the solvent, in which they are immersed,
can be modified allowing a full freedom in tuning the interparticle potential [3]. In typ-
ical polymeric systems with low inner monomer concentration, such as polymer chains,
dendrimers, microgels, or block copolymers, it is plausible that, as a consequence of their
complex inner structure, the centers of mass of the macromolecules can overlap and upon
compression even cross each other. Hence the resulting “effective” pair potential must re-
main finite and bounded at zero separation and at the same time must be soft enough to
assure the interpenetrability between the “effective” particles [4].
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In the last two years Mladek al. have considered a typology of interaction potentials
which presents the above required functional features [5]. The thermodynamical and struc-
tural properties of the so-called generalized exponential model (GEM-n) have been de-
scribed through accurate theoretical approaches and advanced numerical techniques [6-8].
Moreover, Likos al. have rationalized the behavior of GEM-n phase diagrams analyzing
the Fourier Transform (FT) of the potential [9]. In particular if the FT is non-negative
the system displays a reentrant melting with an upper freezing temperature. The simplest
statistical model which after freezing re-melts upon further compression is the gaussian
core model (GCM). The model was introduced in 1976 by Stillinger [10] and ultimately its
phase diagram has been fully traced out through accurate theoretical and numerical meth-
ods [11,12]. This curious phenomenon has been verified for several soft matter systems
such as star polymers [13, 14], microgels [15-17], dendrimers [18, 19] or coarse-grained
block copolymers [20,21]. If the FT of the interparticle potential oscillates around zero
then the system will freeze at all temperatures forming stable clusters. Compared to the re-
entrant melting scenario the clustering effect has obtained little attention. The fluid regime
of the the penetrable sphere model (PSM) was recently investigated using sophisticated
integral-equation approaches [22] while the phase diagram was studied through density-
functional techniques [23]. This model may be a prototype for the interaction between
micelles in a solvent [24]. The functional suitability of the (GEM-n) consists in interpolat-
ing smoothly, through the parameter n, between two model systems above mentioned, i.e.
the GCM and the PSM.

In this paper we study the behavior of the so-called residual multiparticle entropy (RMPE)
as a measure of the relevance of correlations involving more than two particles in the con-
figurational entropy of the generalized exponential model with n = 3. The GEM-3.1
approximates with high accuracy the pair potential between the centers of mass of two
amphiphilic dendrimers [25]. In a series of papers it has been shown that the condition of
vanishing of RMPE is a reliable precursor of the ordering processes occurring in the fluid
phase (for a review see Ref [26]). Very recently the reliability of this statistical entropic
approach has been tested against the “exact” phase diagram of the GEM-4 [27]. Starting
from this assumption we try to trace out qualitatively the freezing line of the GEM-3.

The rest of the paper is organized as follows: In Section 2, we introduce the general-
ized exponential model and the structural indicators able to detect an order-disorder phase
transition. The Section 3 is devoted to the integral-equation theory and to the Monte Carlo
simulation. Results are exposed in Section 4 and conclusions are deferred to Section 5.

2. The model and statistical entropy approach

For spherical particles the generalized exponential model (GEM-n) presents the follow-
ing functional expression [3,6]:

(1) v(r) = eexp(—r/o)",
where € and o fix the energy and length scales, respectively. This law represents a purely
repulsive bounded pair-potential as reported in figure 1 and 7 is an arbitrary positive num-
ber. We also introduce the reduced number density p* = po? and the reduced temperature
T* = kpT/e being kp the Boltzmann constant. It is direct to verify that for n > 2 the
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FIGURE 1. The potential GEM-n for n = 2, 3, 4, 10 and co The GEM-
2 and GEM-oo are the Gaussian core model and the penetrable sphere
model, respectively.

FT of this potential oscillates around zero and hence the system will freeze at all tempera-
tures [23]. It has been shown that within a certain temperature range the GEM-n withn > 2
solidifies into crystals where lattice sites are multiply occupied [5]. This fascinating phe-
nomenon has not been experimentally observed. However, it has been suggested that some
amphiphilic dendrimers could form such crystals, but experiments are still lacking [25].

The exact phase diagram of GEM-n with index n = 4 has been, recently, traced through
a new approach to evaluate the free energy of a reference multiply occupancy crystal, i.e.,
a solid with multiply occupied sites [7]. However, calculating the free energy of either
a dense fluid or a hot solid still remains a demanding computational task that requires
intensive simulations to be carried out at several state points as well as some preliminary
selection of the most likely candidate solid structures.

For such reasons, a number of empirical rules have been proposed since the early years
of statistical mechanics in an attempt to correlate phase-transition thresholds with the ther-
modynamic or structural properties of the solid and fluid phases, respectively. All such
criteria are typically based on the properties of one phase only and, in general, can be
easily implemented with a modest computational effort [28].

As already anticipated in the Introduction we shall use an entropic criterion originally
proposed by Giaquinta and Giunta for the freezing of hard spheres [29]. This approach is
based on the possibility to expand the excess entropy of a fluid as an infinite serie [30]:
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where sex is the excess entropy per particle in units of the Boltzmann constant and the
partial entropies s,, are obtained from the integrated contributions of the spatial correlations
between n-tuples of particles. In particular, the two-body term can be written as [31]:

3) =3 / {9(r)ng(r) — g(r) + 1}dr

where the quantities g(r) are the radial distribution functions (RDF). The residual multi-
particle entropy (RMPE)

“) AS = 5y — 89

turns out to be a sensitive indicator of the structural changes which take place in the system.
It has been shown that the zeros of this function systematically correlate with the thresholds
of thermodynamic stability of the homogeneous fluid phase [26, 32].

Recently, we have verified the reliability of this empirical rule for the localization of the
fluid-solid transition thresholds of bounded and soft interaction potentials [33,34]

3. Integral equation theory and Monte Carlo simulation

The Ornstein-Zernike (OZ) integral equation reads:

5) h(r) = c(r) + p/h(r')c(\r —r'|)dr’

where h(r) and ¢(r) are the total and the direct correlation functions, respectively. A clo-
sure relationship is introduced when a functional form is given for 4(r). The hypernetted
chain (HNC) corresponds to

6) h(r) = exp[—0v(r) + h(r) —c(r)] = 1

where v(r) is the interaction potential [35]. Within the HNC framework the excess chemi-
cal potential can be expressed through a closed form in terms of the distribution functions.
Hence, it is direct to derive the expression of the excess free energy [36]. The integral
equation was solved numerically for 7% = 0.2, 0.5, 0.8, 1.0, using the method originally
proposed by Gillan with 1024 equally spaced grid points, setting the mesh size to 0.01 [37].
We have performed Monte Carlo (MC) simulations in the canonical ensemble (NVT) of
the GEM-3 for the following isothermal (T = 0.2, 0.5, 0.8, 1.0) and isochoric (p* = 4.8
and 8.0) quasistatic paths in order to verify the reliability of the HNC estimates. The phase
space points of MC simulations are shown in figure 2. We have used the standard Me-
tropolis algorithm for sampling the equilibrium distribution in configurational space. The
typical system consisted of 500 particles enclosed in a square box with periodic boundary
conditions which provides a sufficiently reliable results in the fluid regime. However, fur-
ther runs with larger number of particles have been occasionally analyzed in order to detect
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FIGURE 2. Monte Carlo simulation points in the phase space.

any dependence of our results on the size of the system. As a rule the last MC configura-
tion at a given p has served, after suitable rescaling of particle coordinates, as the starting
configuration for the run at a slightly higher density. For each p* and T, equilibration
of the sample typically takes 5 x 10> MC sweeps, a sweep consisting of one attempt to
sequentially change the position of all particles. The maximum random displacement of
a particle in a trial MC move has been adjusted once a sweep during the run so to keep
the acceptance ratio of the moves as close as possible to 50%, with only small excursions
around this value. For given NVT conditions, the relevant thermodynamic averages have
been computed over a trajectory whose length ranges from 2 x 10 to 6 x 10* sweeps. In
particular, the excess energy per particle uo, and the pressure P are carefully monitored.
Pressure comes from the virial formula,

ir 1
(7) P = pkBT + w y Vir = —g Zrijvl(rij)
1<)

(r;; s the distance between particles ¢ and j). The RDF histogram has been constructed
with a spatial resolution of Ar = r,,/100 and updated every 10 MC sweeps. We found
that the RDF was never significantly different from unity for low and moderate density.
The fulfillment of this condition is important since it may obviously affect the numerical
precision of the estimate obtained for the pair entropy using Eq. (3). In fact, some dis-
crepancies between the HNC and MC pair-entropy estimates were noted at high density
in proximity of the zero-RMPE. The stability of the RDF contact values was considered
(within the numerical accuracy of the calculation) a good indicator of the equilibration
achieved in proximity of the phase-separation threshold. In order to evaluate the numer-
ical errors affecting the main statistical averages, we have divided the MC trajectory into
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ten blocks and estimated the length of the error bars as being twice the empirical stan-
dard deviation of the block averages from the mean (under the implicit assumption that the
decorrelation time of any relevant variable is less that the size of a block). Typically, the
relative errors of energy and pressure is smaller than few tenths of a percent also at high
density.
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FIGURE 3. Pressure of the GEM-3 for T* = 0.2, 0.5, 0.8 and 1.0 plotted
as a function of the reduced density. MC results: filled circles; HNC-
closure: solid line.

The difference in excess free energy between two equilibrium states of the system, say 1
and 2, lying within the same phase is computed through the combined use of the formulae

®) fex(T2, p) _ fex(T1, p) _ /T2 uex (T, p)

dT
T2 Tl Ty T2
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and

P2 P
©) Bfex(T. p2) = Bfex(T p1) +/ dp% V”pTvP) _ 1} ,
P1

where fo is the excess Helmholtz free energy per particle and 3 = (kgT)~!. The above

o pl=1

g(r)

FIGURE 4. Radial distribution functions of the GEM-3 model as ob-
tained by Monte Carlo simulations (filled and open circles) and from the
HNC-closure (solid lines) for 7* = 0.2, 0.5, 0.8 and 1.0. For clarity, on
each panel the RDF corresponding to the larger density have been shifted
upwards by a certain amount.

formulas are, however, useless if one does not have an independent estimate of the system
free energy in a reference state. Only in this case do Egs. (8) and (9) help in finding the
free energy of any other state in the same phase. As a reference state for the fluid, we can
choose any equilibrium state that is characterized by a very small p value and arbitrary
T (say, a nearly ideal gas), since then the excess chemical potential of the system can be
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accurately estimated by the Widom or particle-insertion method [38].

(10) Hex = *kBTln <exp (7ﬂEins)> )

where Fji,s comprises all interaction terms between a randomly-inserted ghost particle and
all the system particles. The average in Eq. (10) is evaluated numerically during a run of

FIGURE 5. Residual multiparticle entropy of the GEM-3 for different
temperatures plotted as a function of the reduced density. Symbols and
lines represent the MC and HNC results, respectively. Squares (MC) and
dashed line (HNC) for T* = 0.2; Diamonds (MC) and dash-dotted line
(HNC) for T* = 0.5; Circles (MC) and dotted line (HNC) for T* = 0.8;
Triangles (MC) and solid line (HC) for 7* = 1.0.

typically 5 x 10* equilibrium sweeps, with an insertion attempted at the completion of
every sweep. Once [y is given, the excess values of free energy and entropy will follow
from

(1]) ﬁfexzﬁﬂex_ﬁi+1 and sﬂzﬁ(uex_fex>-

p kg
It is useful to note that, from a strictly numerical point of view, choosing a very dilute gas
as a reference state for the fluid is far better than starting the thermodynamic integration in
Eq. (9) from the ideal gas of equal temperature. In fact, unless one has a lot of thermody-
namic points in the very-dilute region of the phase diagram, a spline interpolant of 5P/p
that is sufficiently accurate in this region is hard to construct.

4. Results and discussion

In figure 3 we report the comparison between the MC and HNC pressure estimates for
T* = 0.2, 0.5, 0.8 and 1.0. The agreement is excellent until the iterative procedure to
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FIGURE 6. Structure factors S(g) as a function of go obtained by the
HNC-closure for a fluid GEM-3 for 7" = 0.2, 0.5, 0.8, 1.0 and at the
corresponding densities where the RMPE vanishes. The dashed hori-
zontal line indicates the freezing threshold (2.85) of the Hansen-Verlet
rule.

solve the HNC equation converges. Slightly discrepancies are visible only for 7' = 1.0
and at very high density. In figure 4 the RDF evaluated by the numerical simulation and
integral equation are compared. As for the pressure case the agreement is good. Some tiny
discrepancies between the HNC and MC results appear only at the highest density and for
distances near to zero separation as already reported in [9] for n = 4. Now we present the
RMPE profile for different values of the reduced temperature. Figure 5 shows the density
dependence of this quantity. The differences between the HNC and MC zero-RMPE values
is ascribable to the fact that at very high density the RDF’s computed by the simulations
with N = 500 differ from unity giving rise a not-negligible error in the pair-entropy es-
timate (see Eq. (3)). The error grows increasing the temperature and, as consequence, the
density. As already noted elsewhere, the zero of the RMPE identifies a structural threshold
beyond which the system enters a liquidlike regime where cooperative, i.e., intrinsically
manybody, effects come into play in determining the state of the fluid. The zero-RMPE
density was found to increase for increasing the temperature. However, we recall that
the one-phase character of this criterion does not allow for an exact characterization of
the phase transition occurring in the vicinity where the RMPE vanishes. Indeed, within
such a framework we cannot easily detect what kind of phase transition the mixture under-
goes. Notwithstanding, this entropic approach, likewise more famous freezing one-phase
rules [39,40], can be used as a sort of “litmus paper” to indicate qualitatively the threshold
of ordering processes occurring in the system. In figure 6 we show the HNC structure
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FIGURE 7. Zero-RMPE freezing temperature plotted in reduced units
as a function of the reduced density as obtained from MC simulations
(filled circles) and from HNC-closure (open circes). The crosses indi-
cates the freezing estimates obtained from the Hansen-Verlet rule. The
inset shows the phase diagram of the GEM-4. The squares are the freez-
ing estimates obtained from ‘“exact” free-energy calculations [7], while
the filled circles are the Zero-RMPE freezing temperature. The crosses
indicates the freezing estimates obtained from the Hansen-Verlet rule.
The lines are a guide for the eye.

factors for some reduced temperatures corresponding to the density where the RMPE van-
ishes. We note that the first peak is about 2.85 which is the value according to which
the Hansen-Verlet criterion indicates the freezing phase transition in harshly repulsive lig-
uids. However, it has been correctly emphasized for the GEM-4 that the first peak of the
structure factor close to freezing considerably exceeds the value of 2.85 demonstrating that
the ultrasoft systems can support a higher degree of spatial correlations than hard matter
systems before they freeze [6].

In figure 7 we trace the locus of points associated with the vanishing of the RMPE. The
resulting line qualitatively could represent the freezing line of the GEM-3. In the same
graph we report the Hansen-Verlet freezing estimates which basically coincide with the
RMPE results. In the inset we plot the comparison between the entropic criterion freezing
estimates [27] and the fluid-solid line evaluated through “exact” free-energy calculations
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for n = 4 [7]. Hence we can expect that the both RMPE and Hansen-Verlet freezing
estimates behave similarly for n = 3, anticipating and understimating systematically the
“correct” fluid-solid coexistence line of an amount which, however, does never overcome
the 10%.

5. Concluding remarks

In this paper we have qualitatively traced out the freezing line of the GEM-3 by means
of an one-phase empirical criterion based on the expansion of the statistical entropy. It has
been suggested that a GEM with n = 3.1 may approximate with high accuracy the effec-
tive potential of typical amphiphilic dendrimers [25]. We have used the HNC closure and
MC numerical simulations to obtain the thermodynamic and structural ingredients for the
evaluation of the RMPE. We have also noted a good agreement between the freezing pre-
dictions obtained from RMPE and Hansen-Verlet rule. Indeed, as already evidenced [32]
both criteria identify an intrinsic structural condition of the fluid which, in the enlightening
perspective offered by the multiparticle correlation expansion of the statistical entropy, re-
veals itself as the microscopic backstage of the incoming transition of the fluid into a more
ordered state.
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